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NEAR-CRITICAL PATH ANALYSIS: A TOOL FOR PARALLEL PROGRAM OPTIMIZATION
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Abstract. Program activity graphs (PAGs) can be constructed from timestamped traces of appropriate execution
events. Information about the activities on the k longest execution paths is useful in the analysis of parallel program
performance. In this paper, four algorithms for finding the near-criti cal paths of PAGs are compared. A framework for
using the near-criti cal path information is also described. The framework includes statistical summaries and
visualization capabilities that build upon the foundation of existing performance analysis tools. Within the framework,
guidance is provided by the Maximum Benefit Metric, which uses near-criti cal path data to predict the maximum
overall performance improvement that may be realized by optimizing particular criti cal path activities.

1. Introduction. Developing efficient parallel programs has proven to be a difficult task. Substantial
research has been devoted to many aspects of the problem; active work spans the computer science
spectrum from algorithmic techniques, programming paradigms, advanced compilers, and operating
systems to architectures and interconnection networks. Complex interactions at each of these levels have
provided motivation for a suite of performance measurement and analysis tools.

Insight into a system's dynamic behavior is a prerequisite for high-productivity optimization of parallel
programs. Multiple tools, offering varying perspectives, may be required to gain the necessary insight. The
IPS Parallel Program Measurement System [1] and the Pablo Performance Analysis Environment [2] are
two significant toolkits facilitating different viewpoints based on timestamped probe descriptions of run-
time events.

IPS provides a hierarchy of statistical information based on a five layer model consisting of the whole
program, machine, process, procedure, and primitive activity levels. Critical path and phase behavior
analysis techniques guide the search for performance problems. Critical path analysis focuses the
optimization effort by identifying the activities on the longest execution path; to improve the program's
performance, the duration of activities on the critical path(s) must be shortened.

Pablo is a visualization and sonification toolkit designed to be a de facto standard through a philosophy
of portabilit y, scalabili ty, and extensibili ty. Custom performance analysis environments are constructed by
graphically interconnecting a set of analysis and display modules. The graphical programming model
encourages experimental exploration of the performance data.

The utili ty of critical path analysis can be extended when information is available about the k longest
paths. Optimization of specific critical path activities may provide littl e overall performance improvement
if the second, third, etc., longest paths are of similar duration and consist of independent activities. Near-
critical paths can be used to further refine the analysis process by quantifying the benefit of optimizing
critical path activities. The initial focus of this paper is on efficient algorithms for determining the near-
critical paths of program activity graphs. Efficient algorithms are important because program activity
graphs can be very large (hundreds of thousands of vertices).

We also present a framework for using near-critical path data that encompasses both statistical
summaries (patterned after IPS) and the visualization capabiliti es of Pablo. Guidance is provided by the
Maximum Benefit Metric, which includes the synergistic effects of common activities on near-critical paths
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to predict the maximum overall performance improvement associated with optimization of particular
critical path activities.

In Section 2, critical path algorithms are reviewed to provide the background needed for description of
near-critical path algorithms in Section 3. Probe acquisition and construction of program activity graphs are
discussed in Section 4. A framework for near-critical path analysis is presented in Section 5. Section 6
contains the description of the applications and performance results from the Maximum Benefit Metric.
The paper is concluded in Section 7 with a summary of key results.

2.  Critical Path Algorithms.

2.1.  Program Activity Graphs. A program activity graph (PAG) is an acyclic, directed multigraph
representing the duration and precedence relationships of program activities. Edges represent execution
activities, weights represent activity durations, vertices mark activity boundaries, and outgoing activities
from a vertex cannot begin until all incoming activities have completed. Multigraphs are distinguished by
multiple edges between a given pair of vertices. Although not all PAGs are multigraphs, generali ty requires
that near-critical path algorithms accommodate multigraphs (PAG characteristics are determined by the
semantics of the target system). The biggest impact of the multigraph characteristic is on data structure
selection.

2.2.  Longest Path Algorithm. IPS employs a modified shortest path algorithm, based on the diffusing
computation paradigm [3], to find the path with the longest execution duration. A diffusing computation on
a graph begins at the root vertices and diffuses to all descendant vertices. In the synchronous variation, a
vertex will not diffuse a computation to its descendants until all incoming computations are received. A
version of the synchronous algorithm with adaptations to accommodate multigraphs is given in [4].

2.3.  Critical Path Method. The critical path method is an operational research algorithm for finding
the longest path(s) through an activity-on-edge network [5]. The critical path method calculates early start
and earl) finish times for each activity in a forward pass through the network. Late start times, late finish
times, and slack values are calculated in a backward pass. Table 1 defines the terms that will be used to
explain the algorithm.

Notation Definition
d(i) duration of activity i
ES(i) early start time of activity i
EF(i) early finish time of activity i, ES(i) + d(i)
LS(i) late start time of activity i
LF(i) late finish time of activity i, LS(i) + d(i)
TS(i) total slack of i, LS(i) - ES(i) := LF(i) – EF(i)
FS(i) free slack of i, ES(i’s immediate successors) – EF (i)

TABLE 1. Critical Path Method Notation

The early start time of an activity is the earliest possible time the activity can begin. The late start time
of an activity is the latest time the activity can start without extending the overall network completion time.
The slack values are criticali ty measures. The total slack of an activity is the amount of time that it can be
delayed without affecting the overall completion time. Activities with zero total slack are on a critical path.
The free slack of an activity is the amount of time the activity can be delayed without affecting the early
start time of any other activity. The total slack values of activities on a path are not independent; delaying
an activity longer than its free slack reduces the slack of subsequent activities. The values calculated by the
critical path method for a simple example network are shown in Fig. 1.

2.4.  Algorithm Comparison. The longest path algorithm is more efficient than the critical path
method (since the longest path is found in a single pass through the edges). However, the critical path
method produces more information; multiple critical paths are identified and the slack criticali ty measures
are provided. Both algorithms have the same asymptotic time complexity, in 0(e), where e is the number of
edges in the graph. Selection of the most appropriate algorithm is dependent upon application needs.
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3.  Near-Critical Path Algorithms.

Definition 1: A near-critical path is a path whose duration is within a certain percentage, the near-
criticality percentage, of the critical path duration. The near-criticality percentage (denoted nc%) may be
specified by the user or reported by the algorithm. Three near-critical path algorithm approaches are
summarized in the following list:

1) Specify maximum number of longest paths to find, k, and report nc% of kth longest path,
2) Specify nc% and find all near-critical paths.
3) Specify both k and nc% (i.e., find up to k longest near-critical paths).

In this section, four near-critical path algorithms are compared: the path enumeration and extended
longest path algorithms are examples of approach 1); the branch-and-bound algorithm is based on approach
2); and the best-first search algorithm employs approach 3). Approach 3) can be advantageous, relative to
approach 1), when the number of near-critical paths is less than k.

3.1.  Path Enumeration and Extended Longest Path Algorithms. An algorithm for listing the k
shortest paths between two vertices of an acyclic digraph is described in [6]. The algorithm can be easily
modified to enumerate longest paths. For a multigraph containing n vertices and e edges, the worst-case
time and memory requirements of the algorithm are in O(kne) and O(kn2+e), respectively.

A more straightforward approach is to simply extend the longest path algorithm to find the k longest
paths as described in [4]. Since the extended algorithm maintains an array of k (fixed-size) path description
records for each vertex, and a descriptor is required to represent each edge, the storage requirements are in
O(kn+e). The worst-case time complexity of the algorithm is in 0(ke).

3.2.  Brunch-and-Bound Algorithm. Brute-force depth-first searches can solve the longest path
problem in linear space; however, the time complexity is exponential [7]. Branch-and-bound (BnB) is a
technique that may significantly improve the efficiency of depth-first searches by eliminating unproductive
search paths [8]. In this subsection, we show how the slack values calculated by the critical path method
can be used as the basis for a BnB near-critical path algorithm. The notation employed to explain the
algorithm is defined in Table 2.

To find the critical and near-critical paths, depth-first searches are started at the root vertices. A search
is terminated when either a leaf vertex is reached or max_path_duration is less than min_ncp_duration. If a
leaf vertex is reached, then a critical or near-critical path has been found (FS_sum = 0 for a critical path).
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Notation Definition
min_ncp_duration Minimum duration of a near-critical path,

critical_path_duration*((100-nc%)*.01)
FS_sum Sum of free slack on all preceding edges of path
max_path_duration maximum potential duration of current path at any edge of a depth-first

search,
critical_path_duration-(FS_sum + TS)

max_ncp_slack Maximum slack of near-critical path,
critical_path_duration-min_ncp_duration

TABLE 2. Near-Critical Path Notation

The performance of the algorithm is highly dependent upon the input PAG. In the best case, the time
complexity is in 0(1). If we optimistically assume that only one edge exists between any two vertices and
that no vertex has more than two outgoing edges (which is true for the PAGs that we generate), the worst-
case complexity, based on the number of edges that must be examined, is in 0(1.62n). When the critical
path method is also included in the analysis, the best-case and worst-case time complexities are in 0(e) and
0(1.62n+e), respectively.

3.3.  Best-First Search Algorithm. The slack values provided by the critical path method can also be
used as the basis for a best-first search (BFS) algorithm that traverses the k longest near-critical paths in
order of nonincreasing duration. The algorithm begins by evaluating all outgoing edges from root vertices.
The edge with minimum total slack is selected. The critical path method guarantees that at least one of
these edges will be on a critical path and have zero total slack. Once a path has been selected, traversal is
an iterative process of following the edge with minimum total slack at each descendant vertex. When a leaf
vertex is reached, the next longest path is selected for traversal.

Traditionally, the applicability of BFS has been limited by an exponential memory requirement [9].
The memory is needed to save the state of all partially explored paths so that optimal selections can be
made. Slack values provide the information needed to overcome this limitation. Since slack is a global
criticality measure, storage can be constrained to maintaining state for the k longest near-critical paths that
have been found. To maintain this state information, partial paths encountered during near-critical path
traversal must be evaluated. Partial paths are formed by edges that are not on the current near-critical path.
Partial path evaluation is based on the cost function (FS_sum + TS), and state is maintained for the
minimum cost near-critical paths.

To minimize path evaluation overhead, path costs are maintained in a max-heap data structure. This
allows direct access to the maximum cost partial path and a new (lower) maximum can be established in
logarithmic time. To minimize the overhead of selecting the next longest path, path costs are also
maintained in a min-heap. When the max-heap is modified by sifting down a new entry, the associated
min-heap entry is percolated up to maintain the integrity of the dual heaps. Thus, the minimum cost partial
path is always available at the top of the min-heap.

Path state information is preserved in path_descriptor records. Pointers to the descriptors of edges on
near-critical paths are recorded in path_entry records. Paths consist of two segments. The first segment of a
path contains edges shared with the (parent) near-critical path that was being traversed when the partial
path was formed. These edges begin at a root vertex. When a partial path is formed, information about the
preceding segment is saved in the path_descriptor. This information includes a count indicating the number
of edges on the first path segment, path_1_cnt, and a pointer to the path_descriptor of the parent path,
path_1_p. The second path segment consists of a linked-list of path_entry records.  The first path_entry
record for the second path segment, path_2, is also contained in the path_descriptor. The second path
segment is constructed during near-critical path traversal and terminates at a leaf vertex.

A pointer to the path_entry record corresponding to the minimum cost path from a vertex is saved at
the first visit to each vertex to allow additional path_entry record sharing. If, during near-critical path
traversal, a vertex is reached that has already been visited by an earlier traversal, then all succeeding edges
are shared with the earlier path. Duplicate path_entry records are required only when the same edge begins
the second segment of near-critical paths, which can occur a maximum of k/2 times. Therefore, the worst-
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case memory requirement for the algorithm is in O(k+e). Fig. 1 provides an illustration of the path
description data structures for the graph in Fig. 2.

The worst-case time complexity of the algorithm is in 0(ke), with the dominant factor being that 0(e)
edges may need to be examined during each of the k near-critical path traversals. A detailed analysis of the
algorithm, along with proofs of correctness and worst-case optimality can be found in [10l (worst-case
optimality is established in terms of both time and space for the problem of enumerating the k longest paths
of acyclic, directed multigraphs).

Algorithm Comparison. Asymptotic upper bounds on the worst-case time and memory requirements
for the four near-critical path algorithms are summarized in Table 3.

Algorithm Enumeration Longest Paths BnB BFS
Time O(kne) O(ke) O(1.62n+e) O(ke)
Memory O(kn2+e) O(kn+e) O(e) O(k+e)

TABLE 3. Worst-Case Complexities Of Near-Critical Path Algorithms

One advantage of the path enumeration algorithm is the capability to incrementally explore the next
longest path until sufficient data is available, which is potentially useful in an interactive environment. The
BFS algorithm can be used similarly, but is constrained to a maximum of k paths. Memory requirements
limit the utility of the extended longest path algorithm. Uncertainty differentiates the BnB and BFS
algorithms. With BnB, the uncertainty is associated with execution time; with BFS, the uncertainty is
associated with the near-criticality percentage of the kth longest path. The significance of the BFS algorithm
is in the combination of time and memory requirements.

4.  Probe Acquisition and PAG Construction.

4.1.  SuperMSPARC Multicomputer and Instrumentation System. The traces used in this study
were collected with the instrumentation facilities of the SuperMSPARC multicomputer [11]. The
SuperMSPARC is a 32-processor machine based on the SPARCstation 10 multiprocessor. There are eight
SPARCstations, each of which contains four 90 MHz Ross hyperSPARC processors.   SuperMSPARC has
three types of interconnection communication networks: Ethernet, ATM, and Myrinet. Each node is

pa th _d escrip to r 1 co st=0 next

pa th _1 _ cn t= 0 ed ge_p
nu m  0pa th _1 _ p

next

ed ge_p
nu m  2

pa th _d escrip to r 2 co st=5 next

pa th _1 _ cn t= 1 ed ge_p
nu m  3pa th _1 _ p

next

ed ge_p
nu m  4

pa th _d escrip to r 1 co st=2 0 next

pa th _1 _ cn t= 0 ed ge_p
nu m  1pa th _1 _ p

next

ed ge_p
nu m  5

path  1
(0 ,2 ,5 )

path  2
(0 ,3 ,4 ,5 )

path  3
(1 ,4 ,5 )

pa th _2 pa th _en try

Legen d:
path i

(edg e nu m bers )

F ig .  3 .1 .  BF S  path  d es c r ip tio n  data  s truc tu res .FIG. 2. BFS path description data structures.



6 ALEXANDER, LAMBERT, REESE, HARDEN AND BRIGHTWELL

equipped with an intell igent performance monitor adapter that provides an interface to a separate data
collection network.

Hardware, software, and hybrid measurement systems have been used to record event traces. Hardware
instrumentation is unobtrusive and delivers useful low-level information, but is costly and provides
information with limited context. Software instrumentation is simple and flexible, but can perturb the
execution characteristics of the program being measured. Hybrid measurement systems combine software
with hardware support and provide an attractive compromise [12], The SuperMSPARC instrumentation
system implements a hybrid approach. Special hardware on the performance monitor adapter collects and
timestamps information written by software probes from the MPI environment. All processing of probes is
done by the instrumentation processor, so the only obtrusiveness comes from the actual writing of the
probe data, which has been measured to be ~2 microseconds per probe.

The SuperMSPARC instrumentation system records performance data to disk for postmortem analysis.
A global timestamp clock shared by the performance monitor adapters allows for a total ordering of events
collected from all nodes. Recorded probes are converted to the Pablo Self-Defining Data Format (SDDF)
for the purpose of PAG generation and visualization using a Pablo display.

4.2.  Message Passing Environment. The defacto message passing standard Message Passing
Interface (MPI) was chosen as the vehicle for implementation of the construction of the PAG for near-
critical path analysis. The MPI standard is independent of any particular machine architecture and allows
the programmer to write portable programs that can be run without changes to the underlying
communication protocol [13]. Since the most important events a performance monitoring systems needs to
analyze are communication events, acquisition of probe information will be done primarily within the MPI
function calls.

An MPI probe library was designed with probe function calls placed at the beginning and end of each
MPI function call . This allows a timestamp of the beginning and end of the MPI call to be taken so the
interval of execution time of the function can be obtained. These probes were inserted by using the MPI
profili ng interface. The MPI profili ng interface allows MPI function calls to be replaced by user-defined
functions that can perform performance monitoring activities and then invoke the true MPI functions. The
programmer can easily link the probe library with the application to obtain probe data without source code
modification. Table 4 shows the types of MPI and additional probes that are implemented on the
SuperMSPARC.

Probe Type Overview
All Gather All the processes distribute data to all the other processes.
All Reduce An operation is performed on the data from all the processes. The result of the

operation is obtained by all the processes.
Barrier Each process is blocked until all the processes have called the barrier function.
Broadcast A root process distributes data to all the other processes.
Message IRecv A process attempts to receive data without blocking the task’s execution.
Message ISend A process attempts to send data without blocking the task’s execution.
Message Receive A process receives data while blocking the task’s execution.
Message Send A process sends data while blocking the task’s execution.
Reduce An operation is performed on the data from all the processes and result is

obtained by the root.
Wait Blocks a process until a non-blocking call i s completed
Additional Probes
Computation Computation work being performed by the processes.
Idle Time Idle period for processes waiting for a message

TABLE 4. SuperMSPARC Probe Types. MPI Routines Instrumented

4.3. Construction of Program Activity Graphs. PAGs from a message passing environment contain
one root vertex for each node involved in the program execution. All vertices have a single child except
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those that mark the beginning of a remote message being sent. These vertices could have two or more
children. One child is associated with the following event on the same node, and the other children mark
the ending of the associated receive edge on the destination node. The duration of the edge to the remote
node is the difference between the end of message reception time at the destination node and the start of
message transmission time at the source node, and thus takes into account effects such as network
congestion. To construct PAGs, several types of probes must be matched (e.g. the beginning and ending of
a receive call). However, the entire construction process, which is described in [4], can be performed in
linear time. A sample PAG is shown in Fig. 3.

5.  Near-critical Path Analysis Framework. The output from the near-critical path program consists
of a list of all the critical and near-critical paths found. Each path consists of a duration and an edge list.
This information by itself is not meaningful to the user as the relationships between the edges listed and
program activities are not known. In any case, a list of all the program activities on the near-critical paths
would most likely contain too much information to be useful. Near-critical path analysis will attempt to
provide both guidance through hierarchical summaries expressed in terms of logical events within the
application program, and capabilities flexible enough to support detailed exploration of small-scale
behavior.

At the highest level, the critical paths are analyzed. Classical metrics such as computation and
communication percentages is provided. Activities may be viewed from a processor perspective or broken
down by function. Near-critical path activity classes are represented by a new performance metric that
considers contributions across all paths found. The availability of near-critical path data permits prediction
of the maximum performance improvement that may be achieved by optimizing a particular critical path
activity. More importantly, the broader perspective allows guidance to be offered regarding the relative
merits of tuning specific activities.

The computation to communication ratio can be used to assess the appropriateness of the application
decomposition. A high communications contribution to the critical path could indicate an inappropriate, or
too finely grained decomposition. Near-critical path data can also be used as an architecture evaluation
tool. A high communications contribution on all critical and near-critical paths can indicate that increased
interconnection network performance would result in improved application performance.

The availability of PAGs facilitates speculation about the effects of reducing the time associated with a
particular activity. The availability of near-critical path data facilitates selection of the most promising
activities for what if scenarios. The analysis framework supports rapid experimentation by allowing the
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durations of selected PAG activities to be adjusted. The potential effects are then quickly ascertained by
analysis of the modified PAG. While near-critical path guidance is based on a limited number of paths,
what if scenarios extend the analysis to all execution paths.

Visualization complements the statistical perspective by revealing the dynamics of when performance
determining activities occurred. Rather than attempt the impossible task of predicting and satisfying all
potential visualization needs, we have opted to simply output Pablo SDDF records corresponding to critical
and near-critical path activities. In this manner, the full capabilities of the Pablo environment may be
invoked to explore critical and near-critical path activities from the most appropriate perspectives.

The goal of performance debugging metrics is to rank the importance of improving specific program
activities. Six parallel program performance metrics were compared in [14], and although no single metric
was universally superior, the Critical Path Metric (CPM) provided the best overall guidance. CPM ranks
activities according to the magnitude of their durations on the critical path. The Maximum Benefit Metric
(MBM) is an extension of the Critical Path Metric that includes the synergistic effects of common activities
on near-critical paths. The Maximum Benefit Metric for activity i over the k longest paths is computed as
follows:

MBMk(i) = min(d(i)j + (dcp - dj)), for j = i to k, where
d(i)j = aggregate duration of activity i on jth longest path,
dcp = duration of the critical path, and
dj = duration of the jth longest path.

Fig. 4 is a simple example that illustrates how optimizing the largest component on the critical path
may not yield the most overall improvement. Unless all the paths are considered, which is usually not
practical, the impact of the activities on the (k+l)th longest path are not known. Thus, the metric represents a
prediction of the maximum overall benefit associated with particular critical path activities.

Fig. 5 illustrates the aggregate MBMs for communication and computation activities of a parallel
quicksort of 1000 integers. This information reveals additional clues to the application' s characteristics and
behavior. MBM information indicates the need to look at as many as 100 near-critical paths to help predict
the actual optimization benefit that could be obtained by optimizing communication activities. Note that the
actual benefit that can be achieved is much lower than what was deduced by the critical path.
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Once the MBMs over a set of near-critical paths have identified program activities of interest for
optimization, what if scenarios can be used to recalculate the MBMs over all paths. This is accomplished
by zeroing the duration of an operator in the PAG and recalculating the critical path. The MBM for activity
i over all paths is computed as follows:

MBMall(i) = dcp - d(i0)cp,

where d(i0)cp is the duration of the critical path with activity i zeroed, and dcp is the original critical path
duration.

6. Algorithms and Performance Results.

6.1.  Algorithms. Algorithm performance was assessed with PAGs from five application programs: an
N-body simulation application (NBODY), a Monte Carlo application (MONTE), and a ray-tracing
application (ZSNOOP). NBODY simulates the evolution of a system of N bodies where the force on each
body arises due to its interaction with all other bodies in the system. NBODY was designed by David W.
Walker from Oak Ridge National Laboratory in Tennessee [15]. MONTE is a simple parallel
implementation of an Auxiliary-Field Monte Carlo algorithm designed by Carey Huscroft at the
Department of Physics, University of California at Davis [16]. ZSNOOP is a parallel ray-tracing program
that uses a global combine to merge all of the images computed by the individual processors into one
rendering. Lance Burton designed it at the Engineering Research Center at Mississippi State University
[17].  Table 5 summarizes the application-related statistics.

Program Execution
Time (s)

No. of
Edges

No. of
Vertices

CPcom
* No. of

Processors
MONTE 30.301 226 285 61.2% 16
NBODY 29.294 557 448 55.2% 8
ZSNOOP 3,757.882 2131 1908 4.3% 8

TABLE 5. Application-Related Statistics. (*Percent of critical path duration devoted to communication.)

6.2.  Performance Results. Computational performance is measured by execution time of relevant
tasks. To obtain this information, probe calls are placed in delimiting points of the functional areas. Probe
calls are assigned meaningful label names labels. These labels are used to identify computational
performance for individual functional area.

�

��

� C o m m u n ic atio n

[  C o m p u tatio n

1 0 0

1 0

1
1 1 0 01 0 1 0 0 0 1 0 0 0 0

M ax im u m
Ben ef it
M etr ic

N u m b er  o f  P ath s

F ig .  5 .2 .  C o m m u n ic atio n  an d  c o m p u tatio n  M BM s .FIG. 5. Communication and computation MBMs.



10 ALEXANDER, LAMBERT, REESE, HARDEN AND BRIGHTWELL

The MBM results for MONTE in Table 6 show that function MonteCarlo has a lower percentage of
possible performance benefit than was originally suggested by the critical path analysis, but that the true
percentage of performance benefit is not significantly different. MBM confirmed that the critical path
analysis was accurate for function Main, and since this function has a higher potential for performance
benefit, the user should focus on optimizing that function.

Function
Label

Critical
Path %

MBMall

Path %
Main 21.98% 21.98%
MonteCarlo 15.20% 14.60%

TABLE 6. MONTE Results

The NBODY MBM analysis in Table 7 shows that possible performance benefit from function Timing
is only 19.73%, where the critical path analysis showed a higher percentage of possible performance
benefit of 22.97%. This indicates that the optimization of functions Timing and ParticlesInput have nearly
identical expected benefits. Depending on the complexity of the individual functions, this information can
enable the user to better determine which function to optimize.

Function
Label

Critical
Path %

MBMall

Path %
Timing 22.97% 19.73%
ParticlesInput 18.04% 18.02%

TABLE 7. NBODY

For ZSNOOP, MBM results in Table 8 show a more comprehensive estimation of expected
improvement than does critical path analysis. In the original critical path analysis, the results indicated that
function Zprintf accounted for a bigger percentage of the critical path than did DrawImage. The MBM
indicates that optimization of function DrawImage actually has more potential benefit than that of function
Zprintf, The MBM also shows a more refined percentage of possible performance gains of function Zprintf,
which is 14.48 compared to 17.40 from critical path analysis.

Function
Label

Critical
Path %

MBMall

Path %
LoadTriangle 51.31% 51.31%
Zprintf 17.40% 14.48%
DrawImage 17.32% 17.25%

TABLE 8. ZSNOOP

7.  Conclusion. As the availability of parallel computing resources becomes more common, the
practical importance of effective program optimization techniques increases. Consequently, the suite of
available performance analysis tools is evolving, and algorithmic advances are an important component of
the emerging solutions. In this paper, the near-critical path concept has been introduced, and an efficient
new algorithm for finding the k longest paths of directed, acyclic multigraphs has been presented. The
algorithm performs a best-first search in linear space. Best-first is the optimal search strategy, and the new
algorithm allows best-first solution of much larger problems than previously possible. The algorithm can be
used in conjunction with program activity graphs constructed from timestamped traces to identify the
activities on the k longest execution paths. This information forms the basis for a new addition to the suite
of available performance analysis tools by offering a broader perspective for focusing optimization efforts.
We have described a multiperspective framework for near-critical path analysis of program activity graphs
that builds upon the foundation of existing performance analysis tools. Near-critical path data has been
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shown to complement proven techniques by revealing additional characteristics of parallel program
performance.
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